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Abstract: The overlapping genetic and clinical spectrum in inherited retinal degeneration (IRD)
creates challenges for accurate diagnoses. The goal of this work was to determine the genetic
diagnosis and clinical features for patients diagnosed with an IRD. After signing informed consent,
peripheral blood or saliva was collected from 64 patients diagnosed with an IRD. Genetic testing
was performed on each patient in a Clinical Laboratory Improvement Amendments of 1988 (CLIA)
certified laboratory. Mutations were verified with Sanger sequencing and segregation analysis
when possible. Visual acuity was measured with a traditional Snellen chart and converted to a
logarithm of minimal angle of resolution (logMAR). Fundus images of dilated eyes were acquired
with the Optos® camera (Dunfermline, UK). Horizontal line scans were obtained with spectral-
domain optical coherence tomography (SDOCT; Spectralis, Heidelberg, Germany). Genetic testing
combined with segregation analysis resolved molecular and clinical diagnoses for 75% of patients.
Ten novel mutations were found and unique genotype phenotype associations were made for the
genes RP2 and CEP83. Collective knowledge is thereby expanded of the genetic basis and phenotypic
correlation in IRD.

Keywords: inherited retinal disease; genetic testing; clinical

1. Introduction

Non-correctable vision impairments are expected to increase to 13 million people by
2050 [1]. One of the leading causes of these impairments is inherited retinal diseases (IRDs)
which has a prevalence of 1 in 2000–3000 [2,3]. IRDs encompass a clinically and genetically
heterogeneous group of disorders including retinitis pigmentosa (RP), cone-rod dystrophy
(CRD), and various forms of macular dystrophy (MD) such as Stargardt disease (STGD1)
and pattern dystrophy. This group of inherited disorders involve progressive degeneration
of the retina that leads to severe visual impairment and blindness. The most common IRD,
RP is characterized by retinal pigment epithelium (RPE) abnormalities and primary loss of
rod photoreceptor cells followed by secondary loss of cone photoreceptor cells. Patients
typically experience a decline to total loss of night vision during adolescence, followed by
decreased peripheral vision in young adulthood, and deterioration of the central vision in
later life [4]. Dystrophies initially affecting the macula (e.g., MD, STDG1) are distinct from
pan-retinal CRD but often have multiple, similar symptoms that can include uncorrectable
visual acuity, decreased color perception (dyschromatopsia), and increased sensitivity to
light (photophobia).

The overlapping genetic and clinical spectrum in IRD creates challenges for accurate
diagnoses. Technological advances in sequencing strategies allow identification of gene
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mutations for 60–80% of the patients diagnosed with an IRD [5–11]. IRDs are predomi-
nantly Mendelian and monogenic but continue to confound diagnosis due to incomplete
penetrance and variable expression. These diseases are typically classified by inheritance
type, age of onset, molecular defect, and by distribution of retinal involvement or fundus
appearance. A direct link from the molecular and biochemical variations to clinical mani-
festations contributes to the ideal, unified subclassification system sought by researchers
and clinicians alike. This work contributes to realizing this goal.

Genetic diagnosis is a critical step in identifying patients who could be eligible for
FDA-approved gene therapy (RPE65-associated IRD-Luxturna [12–14]) or for one of the
many gene targeted clinical trials (e.g., MERTK, RS1, RPGR-associated IRDs [15–17]). An
early and accurate diagnosis enables patients to obtain appropriate visual, social, and
psychological support that will guide life planning and mitigate disease effects on lifestyle
choices. To address these challenges, the objective of this work was to determine the
molecular (genetic) basis of IRD for 64 patients paired with clinical findings to advance our
understanding of genotype-phenotype associations for IRD.

2. Materials and Methods

Patients were evaluated at Dean McGee Eye Institute (DMEI) at the University of
Oklahoma Health Sciences Center (OUHSC) in Oklahoma City, OK. Retrospective data was
collected from patients who were seen from 2018 to 2021. All procedures adhered to the
Declaration of Helsinki and were approved by institutional ethics review boards. Exclusion
criteria included confounding diagnoses such as autoimmune retinopathy, age-related
macular degeneration, and history of retinotoxic medications (e.g., pentosan polysulfate or
hydroxychloroquine). Demographics in Supplementary Table S1 include identification (ID)
number, gender, race or ethnicity, age at diagnosis, age at genetic testing, diagnosis, and
inheritance. ID numbers with a letter after the ID number are family members (relation
in parenthesis). The ethnicity of the patients in this cohort were White or Caucasian (WC,
n = 45, 70.3%), Black or African American (BA, n = 3, 4.7%), Asian (n = 1, 1.6%), Native
American (NA, n = 10, 15.6%), unknown or undisclosed (UK, n = 1, 1.6%), and bi-racial
(n = 4, 6.3%).

Genetic testing was performed after obtaining informed, written consent from all
patients and family members. Peripheral blood or saliva samples of affected and unaf-
fected family members were collected and targeted next generation sequencing (NGS) was
performed externally by CLIA certified laboratories (BluePrint Genetics, Invitae, Molecular
Vision Laboratory, or Molecular Genetics Laboratory at OUHSC). This certification obliges
them to adhere to federal standards. Their testing panels included 351, 330, 1024, and
251 genes, respectively. Molecular Vision Laboratory’s panel included genes for diseases
outside the boundaries of IRD. Current IRD gene panels used for NGS are publicly available
at Blueprint Genetics, Invitae, and Molecular Vision Laboratory.

Testing performance was provided on individual patient reports. Sequencing was
performed using hybridization-based target capture protocols. To summarize the testing
information for the aforementioned companies, sequences were mapped to the human
reference genome GRCh37/hg19. Genes were excluded from reporting when NGS coverage
was suboptimal, i.e., “>90% of the gene’s target nucleotides were not covered at >20x with
a mapping quality score of MQ > 20 reads.” Deletions and duplications were identified
with proprietary bioinformatics pipelines developed by the individual companies. When
deletions, duplications, and pathogenic variants did not meet NGS quality metrics of a
given laboratory, orthogonal assays were performed to confirm the results. These assays
included, but were not limited to, Pacific Biosciences SMRT sequencing, MLPA, MLPA-seq,
Array CGH, and RT-PCR. Each lab designed their own primers and do not provide them
on the patient reports. Analytical sensitivity exceeded 99% for variants, including indels
less than 15 bp in length for all laboratories. Variants were classified according to the
American College of Medical Genetics and Genomics (ACMG) guidelines. Pathogenesis of
identified variants was determined by the consequences of the change (e.g., amino acid
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substitution), evolutionary conservation, the number of reference population databases, and
mutation databases containing the recorded variant. These included but were not limited to
gnomAD, ClinVar, HGMD Professional, and Alamut Visual. Variant calling, methods, and
data analysis (or contact information for requests) for individual laboratories can be found
at https://blueprintgenetics.com/data-analysis/, https://www.invitae.com/static/data/
WhitePaper_Variant-Classification-Method.pdf, https://www.molecularvisionlab.com/
company/publications/, or https://genetics.ouhsc.edu/ (accessed on 23 December 2022).

Visual acuity was measured with a traditional Snellen chart in clinic at DMEI and con-
verted to a logarithm of minimal angle of resolution (logMAR). Fundus images of dilated
eyes were acquired with the Optos® camera (Optos PLC, Dunfermline, UK). Horizontal
line scans were obtained with spectral-domain optical coherence tomography (SDOCT;
Spectralis HRA; Heidelberg Engineering, Heidelberg, Germany).

3. Results
3.1. Clinical Assessment

Genetic testing was performed on 64 patients (n = 29 male, 45%; n = 35 female, 55%)
diagnosed with an IRD from 53 different families. Clinical diagnosis occurred at an average
age of 31.4 ± 15.3 years whereas genetic testing was performed when patients were at
the average age of 47.7 ± 16.6 years (Table S1). Clinical diagnoses included RP (n = 32,
50.0%), MD (n = 24, 37.5%), and CRD (n = 8, 12.5%). Refraction and BCVA are shown in
Table S1. Ophthalmic evaluations were conducted on 60 patients with IRD (29 RP, 7 CRD,
and 23 MD). Overall, patients with RP and CRD had the broadest range of clinical features
including pallor of the optic disc, arteriolar narrowing, bone spicules, peripapillary atrophy
(PPA), cystoid macular edema (CME), RPE changes in the macula, vitreous syneresis,
posterior vitreous detachment (PVD), and/or epiretinal membrane (ERM; Figure 1A).
Clinical examination showed typical clinical features (pallor of the optic disc, arteriolar
narrowing, and bone spicules) for 17 of 29 individuals diagnosed with RP. Patients with
MD primarily displayed RPE changes in the macula (82.6%) and flecks in the posterior pole
(73.9%; Figure 1B).

3.2. Molecular Findings

Genetic results that explain clinical diagnosis were identified for 48 (75%) patients.
Pathogenic and likely causative mutations are indicated by the number of patients in
this cohort affected by a given gene as shown in Figure 1B. Gene mutations were most
frequently (23%) found in the gene ABCA4 (Table 1) followed by PRPH2 (n = 7, 11%;
Figure 1B). Five patients from two families had RP2 mutations (8%). Three patients (5%)
with autosomal recessive RP (arRP) had CNGB1-related disease. The same GUCA1A
mutation (Table 1) was found for three CRD patients (5%) from two different families.
Mutations were identified for two individuals for each of the genes ADGRV1, USH2A, and
RPGR (3% each). The remaining genes (PDE6B, CNGB3, BEST1, HK1, NMNAT1, PRPF31,
RHO, RP1) were associated with a single patient (2%) with IRD (Figure 1B). Ten novel
mutations and the previously reported as IRD-causing mutations are provided in Table 1.
The unique mutations comprised five missense, one frameshift, three in-frame deletions or
duplications, and one promoter mutation (Table 1). Altogether, we were able to provide
a genetic diagnosis to 21 RP patients, seven patients with CRD, and 20 patients with MD
(Figure 1C).

https://blueprintgenetics.com/data-analysis/
https://www.invitae.com/static/data/WhitePaper_Variant-Classification-Method.pdf
https://www.invitae.com/static/data/WhitePaper_Variant-Classification-Method.pdf
https://www.molecularvisionlab.com/company/publications/
https://www.molecularvisionlab.com/company/publications/
https://genetics.ouhsc.edu/
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Table 1. Patient Genetics.

Subject
ID

Ethnicity
(Gender) Refraction OD; OS BCVA OD; OS LogMAR OD;

OS
Age at
Dx/GT Dx Gene 1 Gene 2 Variant

DM001 WC (M) ND 20/320; CF 1.2; 3/56 adCRD GUCA1A NA c.428delinsACAC (p.Ile143delinsAsnThr)
[18,19]

DM002 WC (M) +2.50 + 1.00 × 090;
+1.75 + 2.00 × 090 20/50; 20/63 0.4; 0.5 5/8 arRP PDE6B PDE6B c.892C>T (p.Gln298*) [20–22]/C.1954C>T

GLN652*) [23]

DM003 WC (F)
−5.50 + 1.00 × 090;
−5.00 + 1.25 × 090 20/100; 20/100 0.7; 0.7 13/16 arMD ABCA4 ABCA4

c.2588G>C (p.Gly863Ala) a/c.1622T>C
(p.Leu541Pro) b & c.3113C>T

(p.Ala1038Val) c

DM004 WC (M) ND 20/400; 20/125 1.3; 0.8 23/28/ arCRD NMNAT1 NMNAT1 c.769G>A
(p.Glu257Lys) [24–26]/c.-71G>C

DM005 NA (M) −1.75 + 1.75 × 040;
−1.50 + 0.75 × 2.25 20/25; 20/32 0.1; 0.2 35/50 adMD PRPH2 NA c.828+3A>T (p.?) [3,27–32]

GP001 WC (F) ND 20/20; 20/20 0; 0 33/37 MDdiso negative negative

GP002 BA, NA (F) ND 20/50; 20/40 0.4; 0.3 49/51 arRP CNGB1 CNGB1 c.583+2T>C [33,34]/2305-34G>A [33,34]

GP004 WC (F) −0.25 + 4.50 × 100;
+1.25 + 1.00 × 077 20/32; 20/20 0.2; 0 35/36 adMD PRPH2 NA c.828+3A>T (p.?) [3,27–32]

GP005 WC (M) ND 20/50; 20/160 0.4; 0.9 25/46 arMD ABCA4 ABCA4
c.5882G>A (p.Gly1961Glu) a/c.3259G>A

(p.Glu1087Lys) d & c.2042G>A
(p.Arg681Gln) [35]

GP005a WC (F) ND 20/800; 20/640 1.6; 1.5 10/50 arMD ABCA4 ABCA4
c.5882G>A (p.Gly1961Glu) a/c.3259G>A

(p.Glu1087Lys) d & c.2042G>A
(p.Arg681Gln) [35]

GP006 WC, NA (M) −3.75 + 1.75 × 100;
−3.75 + 1.00 × 096 20/160; 20/125 0.9; 0.8 15/21 XLRP RP2 NA c.515dup(p.Ser172Argfs*2) [36,37]

GP006a WC, NA (F) +0.25 − 1.25 × 045;
−2.75 − 3.75 × 155 20/32; 20/500 0.2; 1.4 10/41 XLRP RP2 NA c.515dup(p.Ser172Argfs*2) [36,37]

GP006b NA (F) 0.00 + 3.50 × 105;
−3.00 + 4.75 × 080 20/32; 20/30 0.2; 0.2 35/64 XLRP RP2 NA c.515dup(p.Ser172Argfs*2) [36,37]

GP008 WC (F) ND 20/50; 20/50 0.4; 0.4 25/51 arRP ADGRV1 ADGRV1 c.17668_17669del (p.Met5890Valfs*10)
l/c.4378G>A (p.Gly1460Ser)
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Table 1. Cont.

Subject
ID

Ethnicity
(Gender) Refraction OD; OS BCVA OD; OS LogMAR OD;

OS
Age at
Dx/GT Dx Gene 1 Gene 2 Variant

GP008a WC (F) ND 20/50; 20/50 0.4; 0.4 30/55 arRP ADGRV1 ADGRV1 c.17668_17669del (p.Met5890Valfs*10)
l/c.4378G>A (p.Gly1460Ser)

GP009 WC (M) +0.75 + 0.50 × 170;
+1.25 + 0.25 × 165 20/320; 20/200 1.2; 1 39/53 adRP negative negative

GP012 Asian (M) ND 20/250; 20/640 1.1; 1.5 31/42 adCRD PRPH2 NA c.367C>T (Arg123Trp) [38]

GP013 WC (F) ND 20/20; 20/20 0; 0 35/36 adMD PRPH2 NA c.828+3A>T (p.?) [3,27–32]

GP013a WC, BA (F) −0.50 + 0.25 × 075;
Plano 20/15; 20/20 −0.12; 0 20/21 adMD PRPH2 NA c.828+3A>T (p.?) [3,27–32]

GP014 WC (M)
−8.25 + 1.00 × 130;
−9.75 + 1.25 × 055 20/640; 20/200 1.5; 1 60/71 arCRD CNGB3 CNGB3

c.1148del
(p.Thr383Ilefs*13) [39–44]/c.(852+1_853-

1)_(903+1_904-1)dup [45]

GP015 WC (F) ND 20/100; 20/200 0.7; 1 40/79 Rpiso negative negative

GP016 WC (M) +0.50 + 1.00 × 080;
0.00 + 1.00 × 095 20/63; 20/80 0.5; 0.6 7/25 XLRP negative negative

GP017 NA (M) +3.00 − 1.00 × 124;
+3.50 − 0.75 × 076 20/200; 20/200 1; 1 20/48 MDiso BEST1 BEST1 c.286C>G(p.Gln96Glu) [46]/

c.579_580insCATT (p.Lys194Hisfs*2)

GP018 NA (M) ND 20/200; 20/400 1; 1.3 20/56 Rpiso negative negative

GP019 UK (F) +1.00 + 0.00 × 000;
Plano 20/320; 20/32 1.2; 0.2 69/70 adMD PRPH2 NA c.828+3A>T (p.?) [3,27–32]

GP020 WC (M) −0.25 + 0.75 × 110;
−0.25 + 0.50 × 050 20/25; 20/25 0.1; 0.1 22/23 adRP RHO NA c.68C>A (p.Pro23His) m

GP021 NA (M) −7.50 + 2.75 × 080;
−7.25 + 2.50 × 120 20/400; 20/320 1.3; 1.2 5/68 arCRD ABCA4 ABCA4 c.5381C>A (p.Ala1794Asp) e/c.5909T>G

(p.Leu1970Arg)

GP022 NA (M) 0.00 + 0.75 × 135;
+0.25 + 0.00 × 000 20/25; 20/63 0.1; 0.5 48/49 adRP ABCA4 ABCA4 c.2701A>G (p.Thr901Ala) [47]/c.5603A>T

(p.Asn1868Ile) f

GP022a NA (F) −6.00 + 0.50 × 090;
−6.25 + 1.00 × 105 20/20; 20/25 0; 0.1 27/36 adRP negative negative

GP026 WC (F) −1.75 + 0.75 × 120;
−3.00 + 1.25 × 085 20/125; 20/160 0.8; 0.9 41/41 arMD ABCA4 ABCA4 c.6079C>T (p.Leu2027Phe)

g/c.5281_5289del (p.Pro1763del)
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Table 1. Cont.

Subject
ID

Ethnicity
(Gender) Refraction OD; OS BCVA OD; OS LogMAR OD;

OS
Age at
Dx/GT Dx Gene 1 Gene 2 Variant

GP028 WC (F) ND HM; 20/125 0.8 25/84 Rpiso negative negative

GP029 WC (M) ND LP; LP 80/81 XLRP RPGR NA c.2442_2445del (p.Gly817Lysfs*2)
[37,48,49]

GP029a WC (M) ND ND ND unknown XLRP RPGR NA c.2442_2445del (p.Gly817Lysfs*2)
[37,48,49]

GP031 WC (F) −2.75 + 00 × 000;
−3.00 + 0.00 × 000 20/60; 20/160 0.48; 0.9 30/70 arMD ABCA4 ABCA4 c.71G>A (p.Arg24His) [50–54]/c.4469G>A

(p.Cys1490Tyr) h

GP032 WC (M)
+0.25 + 0.75 × 010;
−0.75 + 0.75 × 145 20/20; 20/20 0; 0 37/51 arRP USH2A USH2A

c.10073G>A
(p.Cys3358Tyr) [55–57]/c.10342G>A

(p.Glu3448Lys) n

GP034 WC (M) 0.00 + 0.75 × 025;
NLP 20/25; NLP 0.1; 35/59 arRP negative negative

GP035 NA (F) −5.25 + 0.00 × 000;
−5.75 + 2.00 × 090 20/40; 20/25 0.3; 0.1 39/41 adMD PRPH2 NA c.829-A_1041+?del

GP036 NA (F) −2.25 + 1.50 × 126;
−3.25 + 0.75 × 014 CF; CF 20/70 adRP negative negative

GP037 WC (F) +1.00 + 1.00 × 146;
+0.50 + 1.25 × 012 20/63; 20/63 0.5; 0.5 30/55 Rpiso CEP83 CEP83 c.625C>T (p.Arg209*) [58,59]/c.712A>G

(p.Lys238Glu)

GP039 WC (F) −0.25 + 0.75 × 110;
0.00 + 0.75 × 070 20/32; 20/32 0.2; 0.2 27/40 Rpiso negative negative

GP044 WC (M) −2.50 + 0.50 × 085;
−1.00 + 1.00 × 082 20/50; 20/80 0.4; 0.6 40/65 adRP RP1 NA c.2321_2322ins? (p.Leu774fs)

GP045 WC (F) ND 20/20; 20/20 0; 0 34/53 arRP CNGB1 CNGB1 c.2492+1G>A (p. ?) [33,34]; c.2092T>C
(p.Cys698Arg) [33,34]

GP045a WC (F) −1.50 + 1.50 × 065;
−1.25 + 1.00 × 090 20/40; 20/40 0.3; 0.3 36/42 arRP CNGB1 CNGB1 c.2492+1G>A (p. ?) [33,34]; c.2092T>C

(p.Cys698Arg) [33,34]

GP046 WC (F) +4.00 + 0.75 × 015;
+1.25 + 0.75 × 117 20/32; 20/63 0.2; 0.5 23/24 MDiso ABCA4 ABCA4 c.5882G>A (p.Gly1961Glu) a/c.161G>A

(p.Cys54Tyr) [50,60–64]
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Table 1. Cont.

Subject
ID

Ethnicity
(Gender) Refraction OD; OS BCVA OD; OS LogMAR OD;

OS
Age at
Dx/GT Dx Gene 1 Gene 2 Variant

GP047 WC (F)
−4.00 − 2.25 × 010;
−2.50 − 2.25 × 170 20/40; 20/40 0.3; 0.3 60/67 arMD ABCA4 ABCA4

c.161G>A
(p.Cys54Tyr) [50,60–64]/c.6089G>A

(p.Arg2003Gln) i

GP047a WC (M)
−2.50 + 1.75 × 112;
−2.00 + 1.50 × 065 20/40; 20/50 0.3; 0.4 14/48 arMD ABCA4 ABCA4

c.161G>A
(p.Cys54Tyr) [50,60–64]/c.1304G>T

(p.Gly435Val) & c.5603A>T
(p.Asn1868Ile) f

GP048 BA (M) −2.00 + 0.00 × 000;
−2.50 + 0.50 × 150 20/20; 20/20 0; 0 31/49 MDiso negative negative

GP049 NA (M) −4.25 + 0.00 × 000;
−4.25 + 0.50 × 175 20/50; 20/32 0.4; 0.2 40/49 arRP USH2A USH2A c.2299del (p.Glu767Serfs*21) k/c.4106C>T

(p.Ser1369Leu) [65–67]

GP050 WC (M)
+2.75 + 0.75 × 150;
+2.50 + 1.00 × 011 20/32; 20/25 0.2; 0.1 47/49 arMD ABCA4 ABCA4

c.655A>T
(p.Arg219*) [54,68,69]/c.5603A>T

(p.Asn1868Ile) f

GP052 WC (F) −2.50 + 1.00 × 090;
−2.50 + 1.25 × 090 20/160; 20/160 0.9; 0.9 13/26 arMD ABCA4 ABCA4 c.4773+3A>T (p.?) [70–72]/c.4139C>T

(p.Pro1380Leu) j

GP053 WC (M)
−1.75 + 0.75 × 090;
−2.25 + 1.00 × 090 20/15; 20/15 −0.1; −0.1 31/34 arMD ABCA4 ABCA4

c.1726G>C
(p.Asp576His) [54,73,74]/c.4577C>T

(p.Thr1526Met) [50,75]

GP054 WC (F) −1.00 + 0.00 × 000;
−2.00 + 0.00 × 000 20/25; 20/25 0.1; 0.1 29/32 adRP HK1 NA c.2539G>A, (p.Glu847Lys) [76–78]

GP058 WC (F) −0.25 + 1.75 × 180;
−0.50 + 1.00 × 020 20/125; 20/40 0.8; 0.3 24/70 adRP PRPF31 NA c.(?_−396)_(*1_?)del [28,79–82]

GP059 BA (F) −0.50 + 0.50 × 020;
−0.75 + 0.50 × 165 20/20; 20/20 0; 0 46/47 MDiso ABCA4 CNGA1 c.1749G>C (p.Lys583Asn) [8,83];

c.1339dup (p.Thr447Asnfs*3)

GP060 WC (M) −0.50 + 0.50 × 020;
0.00 + 0.50 × 150 20/80; 20/63 0.6; 0.5 53/67 arMD ABCA4 ABCA4 c.5882G>A (p.Gly1961Glu) a/c.4577C>T

(p.Thr1526Met) [50,75]

GP061 WC (F) ND 20/200; 20/160 1; 0.9 21/28 Rpiso negative negative

GP062 WC (F) unknown 20/20; 20/20 0; 0 33/44 MDiso negative negative
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Table 1. Cont.

Subject
ID

Ethnicity
(Gender) Refraction OD; OS BCVA OD; OS LogMAR OD;

OS
Age at
Dx/GT Dx Gene 1 Gene 2 Variant

GP063 WC (M) +0.50 + 1.25 × 120;
0.00 + 1.25 × 060 20/320; 20/200 1.2; 1 16/35 XLRP RP2 NA c.413A>C, p.Glu138Ala

GP063a WC (F) +0.75 + 0.00 × 000;
Plano 20/20; 20/40 0; 0.3 30/60 XLRP RP2 NA c.413A>C, p.Glu138Ala

GP064 WC (F) +3.25 + 0.00 × 000;
+3.00 + 1.00 × 160 20/20; 20/20 0; 0 35/39 MDiso negative negative

GP065 WC (M) −1.75 + 1.50 × 155;
−2.00 + 1.50 × 180 20/100; 20/125 0.7; 0.8 51/57 CRDiso negative negative

GP066 BA (F) −3.25 + 0.75 × 175;
−4.75 + 0.75 × 025 20/40; 20/15 0.3; −0.1 31/46 arRP MT-RNR1 negative m.1555A>G (homoplasmic) [84–86]

GP067 WC (F) −1.75 + 0.50 × 174;
−3.00 + 0.50 × 090 20/200; 20/200 1; 1 50/62 adCRD GUCA1A NA c.428delinsACAC (p.Ile143delinsAsnThr)

[18,19]

GP067a WC (M) −5.50 + 1.50 × 100;
−4.00 + 1.00 × 171 20/40; 20/25 0.3; 0.1 38/35 adCRD GUCA1A NA c.428delinsACAC (p.Ile143delinsAsnThr)

[18,19]

M, Male; F, Female; Dx, Diagnosis; GT, Genetic Testing; WC, White/Caucasion; BA, Black/African American; NA, Native American; UK, Unknown/undisclosed; autosomal dominant
or recessive (ad or ar), X-linked (XL), isolate (iso), MD, Macular Dystrophy; RP, Retinitis Pigmentosa; CRD, Cone-Rod Dystrophy; ND, not done; OD oculus dexter (right eye); OS oculus
sinister (left eye); CF, counting fingers; HM, hand motion; LP, light perception. See ClinVar Accession numbers: a VCV000007879, b VCV000099067, c VCV000007894, d VCV000099211,
e VCV000099371, f VCV000099390, g VCV000099428, h VCV000099288, i VCV000099428, j VCV000007904, k VCV000002351, l VCV00050362, m VCV000013013, n VCV000209203. Novel
variants are in bold.
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3.3. Genotype Phenotype Correlations

Pedigree analysis for an RP patient GP006 revealed that his mother (GP006a), maternal
grandmother (GP006b), and maternal great uncle (not evaluated, Figure 2A) were also
affected. GP006 and GP006a were diagnosed with RP at ages 10 and 15 years, respectively
(Table 1). Fundus exam of GP006 showed optic disc pallor OU (oculus uterque or both
eyes) arteriolar narrowing, and bone spicules in the peripheral retina (Figure 2B). Hypo-
autofluorescence (AF) in the fovea and nasal periphery suggesting RPE atrophy (Figure 2C).
SDOCT images revealed ellipsoid zone (EZ) changes and confirmed foveal RPE atrophy OU
(Figure 2D). A novel mutation c.515dup (p.Ser172Argfs*2) in the gene RP2 was identified
on genetic testing for each of the affected patients (GP006, GP006a, and GP006b). Clinical
evaluation for GP006a showed high myopia (Table 1), amblyopia OS (oculus sinister or left
eye) and cataract OU. GP006a had typical RP features and RPE changes in the maculae
(Figure 2E). Fundus autofluorescence (FAF) imaging displayed nasal hypo-AF regions,
with dense hypo-AF areas distributed in the posterior pole (Figure 2F). Additionally,
outer nuclear layer (ONL) loss, outer retinal atrophy, and mild vitreomacular adhesion
was identified on SDOCT images (Figure 2G). On fundus examination, GP006b showed
tilted optic nerves with PPA, arteriolar attenuation, as well as pigmentary and atrophic
changes most noticeable in the temporal and inferior periphery (Figure 2H). There were
hypo-AF lesions in the inferior periphery and AF striations in the posterior pole OU
(Figure 2I). GP006b also displayed significant EZ irregularities including temporal atrophy
OU (Figure 2J).

A separate family (patient GP063 and his mother GP063a) also harbored a mutation
in RP2 (Figure 2K). GP063 was diagnosed with RP at age 16 (Table S1) but nyctalopia
onset occurred at 4-years-of-age. Bilateral cataracts were removed at age 21. GP063 had
typical RP features (Figure 2L) and central hypo-AF surrounded by parafoveal hyper-AF
(Figure 2M) which was concomitant with photoreceptor loss in the maculae (Figure 2N).
The patient’s mother (GP063a) reported nyctalopia at age 16 and was diagnosed with typical
RP (Figure 2O) at 30 years-of-age. FAF revealed multifocal areas of hypo-AF corresponding
to regions of bone spicule formation on color fundus photos (Figure 2P). Loss of the EZ
was seen temporally OD (oculus dexter or right eye) whereas OS had almost complete
loss of the photoreceptors (Figure 2Q). Genetic testing for this family revealed a novel RP2
mutation c.413A>C (p.Glu138Ala). A pathogenic mutation has been reported previously at
the same codon [87–89].

Another interesting case included patient GP037, who was diagnosed with isolate
RP at age 30 with nyctalopia onset at 12-years-of-age. Her medical history included
hypertension, diabetes, chronic renal insufficiency, gout, and gastric bypass. Fundus
images were symmetrical OU showing chorioretinal atrophy, RPE changes in the macula
and typical RP features (Figure 3A). FAF showed atrophic midperipheral hypo-AF, PPA,
and a bullseye pattern of AF (Figure 3B). SDOCT imaging was notable for outer retinal
atrophy with foveal preservation of the EZ (Figure 3C). Four generations of family history
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revealed no relatives with visual problems (pedigree not shown). Genetic testing reported
a pathogenic mutation c.625C>T (p.Arg209*) and a variant of uncertain significance (VUS)
c.712A>G (p.Lys238Glu) in the gene CEP83. The VUS Lys238Glu is a missense DNA change
encoding a moderately conserved nucleotide present in 8 of 12 total species. ClinVar (2022-
02-05, 1005895) classifies this variant with uncertain significance for Nephronophthisis.
This information expands the phenotype of IRD for the CEP83 gene which has only been
reported in 2 other individuals [58,59] and is discussed below.
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Figure 2. Phenotype of two families with X-linked RP (XLRP) due to mutations in RP2. (A) Pedigree
analysis for patient GP006 showed three generations of RP (black squares). (B) Fundus images for
GP006 showed optic disc pallor OU, arteriolar narrowing, and bone spicules in the peripheral retina.
(C) Fundus autofluorescence (FAF) revealed hypo-AF in the nasal periphery and fovea. (D) SDOCT
showed ellipsoid zone (EZ) changes and retinal pigment epithelium (RPE) atrophy OU. GP006a
(E–G) had typical RP features (E) with hypo-AF regions in the nasal retina and throughout the
posterior pole (F) and thinning of the outer retina (G). GP006b (H–J) had pallor of the optic disc,
chorioretinal atrophy of the far periphery and pigment migration in the inferior retina (H). Radial lines
and inferior hypo-AF were noted on FAF (I). SDOCT (J) showed outer retinal atrophy in the temporal
macula OU for GP006b. (K) Pedigree analysis for patient GP063 indicated maternally inherited RP
with affected family members from three generations. GP063 (L–N) had typical RP features, an
atrophic macula, and a loss of EZ band on SDOCT. GP063a (O–Q) had typical RP, multifocal areas of
hypo-AF, a loss of EZ temporally OD (upper panel), and complete loss OS (lower panel).
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Figure 3. Phenotype associated with CEP83 mutations. (A) Fundus images for GP037 were showing
chorioretinal atrophy, RPE changes in the macula and typical RP features. (B) Fundus autofluorescence
imaging showed an atrophic midperiphery and a bullseye pattern of autofluorescence. (C) SDOCT
imaging was notable for outer retinal atrophy with foveal preservation of the ellipsoid zone (EZ) line.
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4. Discussion

Because IRDs are characterized by genetic and clinical heterogeneity, gene identifi-
cation and mutation analysis are challenging but important. Continual advancements
in sequencing technologies and genetic discoveries have had a substantial impact on the
molecular diagnosis of IRD patients [5,6,47,90]. We therefore genetically tested 64 indi-
viduals, which identified pathogenic mutations in 18 genes, including ten novel genetic
mutations (Table 1). Although patients with RP had the lowest gene detection rate, previous
reports using multigene panels, next-generation sequencing, or exome sequencing have
had similar findings (50% to 80%) [66,91–95].

A recent study by Sheck et al. [96] found that patients diagnosed with STGD1, MD, or
CRD were solved for 91%, 63%, or 87% of patients, respectively. Although we included
the STGD1 in the MD group, the diagnostic rates are similar to our results showing that
patients with MD and CRD had a 83% and 87% chance of receiving a definitive genetic
diagnosis (Figure 1C), respectively. The one patient (GP059) with MD whose test was con-
sidered negative, received a partial diagnosis due to a heterozygous pathogenic mutation in
ABCA4 c.1749G>C (p.Lys583Asn) [83]. She also harbored a pathogenic mutation in CNGA1
c.1339dup (p.Thr447Asnfs*3). STGD1 MD is inherited in an autosomal recessive manner
and no second potentially disease-causing mutation was detected in the ABCA4 gene. It is
well known that there are missing alleles in unsolved patients with one pathogenic allele in
the ABCA4 gene [97,98].There was a single report (ARVO abstract) suggesting that ABCA4
may cooperate in a digenic fashion to cause IRD [99]. Although a possibility, it is more
likely that a second ABCA4 mutation was not detected (intronic or deletion/duplication) or
that another yet undiscovered gene is responsible.

Earlier this year, a new gene, CLEC3B, was implicated as a cause of MD [100]. Patients
with a CLEC3B mutation had drusen in the posterior pole, nyctalopia, and some decreased
rod responses evaluated with full-field electroretinography (ffERG) [100]. This gene was not
included in the gene panel for the four MD patients without a molecular diagnosis in our
cohort. We therefore used Sanger sequencing to see if these patients had the same mutation.
All four patients had the wild type CLEC3B allele (Figure S1). As more information about
this gene becomes available, we will consider evaluating the entire coding region of CLEC3B
in the unresolved MD cases.

In this research, genotype phenotype relationships were detected for two genes. First,
mutations in the gene RP2 were found for two unrelated families. Both RP2 mutations
reported here are localized to exon 2, which encodes a cofactor-C homologous domain
(CFCHD), confirming a crucial role in RP2 function [101]. The mutation at Ser172 was
previously reported as a severe pathogenic frameshift predicted to result in loss of func-
tion [36,37]. Jayasundera et al. [36] showed a male patient with this mutation who had
significant choriocapillaris atrophy in the midperiphery and the posterior pole without
pigment deposition, similar to patient GP006. A different exon 2 mutation (c.413A>C,
p.Glu138Ala) in RP2 was found for GP063 and GP063a which affects an evolutionary
conserved residue (Glu138) that is a charged, hydrophilic amino acid. Substitution by an
uncharged, hydrophobic residue (alanine) is likely to impair CFCHD function, leading
to loss or reduced function of the RP2 protein [88]. Multiple lines of computational evi-
dence support a deleterious effect on the gene or gene product (Damaging CADD score
of 26.6, likely to interfere with function by Align GVGD Class C65, probably damaging
by PolyPhen2, deleterious by SIFT and MutationTaster). This mutation is located in a
mutational hot spot and critical functional domain. It is also absent from controls in Exome
Sequencing Project, 1000 Genomes Project, and Exome Aggregation Consortium. A differ-
ent mutation at the same nucleotide (c.413A>G, p.Glu138Gly) was found in two unrelated
XLRP families with Italian ancestry [87,88]. Clinical characteristics associated with the
p.Glu138Gly mutation included early-onset macular atrophy, progressive BCVA loss, night
blindness, and visual field constriction since infancy. Additionally, the patient displayed
high refractive myopia, posterior subcapsular cataract, and advanced RP associated with
a choroideremia-like fundus [87] similar to other RP2-XLRP patients [36]. Two carrier
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females (GP006a and GP063a) manifested an RP phenotype, exhibiting atrophic macular
changes and poor visual acuity. The carrier female GP006a demonstrated anisometropia
(asymmetric refraction) of approximately 2.75 D OS, and her son GP006 was moderately
myopic (−3.75 D OU). These refractive errors are in agreement with the myopia association
in RP2 retinal disease [36,83,102]. Conversely, GP063 and GP063a were mildly hyperopic in
one eye (OD: +0.50 and +0.75, respectively; Table 1) although GP063a had cataract surgery
and reported that she was myopic prior to the surgery. There have been no other carrier
females with similar mutations described in the RP2-XLRP literature.

To date, RetNet catalogues 340 genes that cause IRDs. However, the gene CEP83 is
not included in that database likely owing to its novelty for association with IRD. The
CEP83 gene encodes a protein that is essential for ciliogenesis initiation. The CEP83 protein
is a core component of the centriole that is found in almost all cell types. Ciliopathies
manifest particularly during early childhood or adolescence and can affect almost every
organ system [103,104]. Mutations resulting in ciliopathies are often associated with retinal
degeneration, cystic kidney disease, fibrocystic liver disease, diabetes mellitus, obesity,
skeletal dysplasia, and various abnormalities of the central nervous system [104,105]. GP037
had CEP83 mutations c.625C>T (p.Arg209*) and c.712A>G (p.Lys238Glu). Although CEP83
is primarily associated with nephronophthisis, there have been two publications showing
four patients who had autosomal recessive RP (arRP) without nephronophthisis. One of
these patients was homozygous for the p.Arg209* mutation with the same clinical features
as the patient (GP037) reported here. The biallelic mutations in CEP83 was c.712A>G
(p.Lys238Glu). Although pathogenicity has not been proven, we consider the p.Lys238Glu
mutation to be disease causing. First, based on the ACMG guidelines, pathogenicity of
this mutation is supported by lines of evidence supporting evolutionary conservation
(pathogenic supporting argument 3). There is an almost complete absence of the mutation
in population databases gnomAD 0.00040084% (1 person) and 0 individuals in ESP, thereby
fulfilling a pathogenic moderate argument 2 [106]. Pathogenicity is also supported by in
silico modeling (CADD sore 24.1, Align GVGD Class C15, SIFT Deleterious). Moreover,
the phenotype suggests pathogenicity (supporting argument 4) of the mutation, as retinal
dystrophy has also been reported in another patient with arRP and biallelic mutations
in CEP83 (p.Arg209*/p.Arg511Pro) [58] located in the same coiled-coil domain as the
p.Lys238Glu mutation harbored by GP057. She received genetic testing in 2017 that revealed
a single ABCA4 mutation and a single FAM161A mutation. This was prior to the addition
of CEP83 to ophthalmology gene panels. Retesting in 2020 found the two CEP83 mutations
in addition to the previously determined pathogenic mutations. Therefore, when a result is
incomplete or inconclusive, the patient should be retested after some time because new
genes, mutations, and technologies advance rapidly.

These results serve as a basis for future investigation toward understanding genotype
phenotype associations and molecular mechanisms underpinning the pathology that leads
to vision loss for patients with IRD. Moreover, the knowledge gained from this work
contributes to developing treatment for IRD.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes14010074/s1, Figure S1: The c.539 location in CLEC3B associated
with macular disorder is wild type in four patients with similar clinical features. Table S1: Gene
Panel Lists.
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